skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moorman, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cellular signaling pathways are responsible for decision making that sustains life. Most signaling pathways include post-translational modification cycles, that process multiple inputs and are tightly interconnected. Here we consider a model for phosphorylation/dephosphorylation cycles, and we show that under some assumptions they can operate as molecular neurons or perceptrons, that generate sigmoidal-like activation functions by processing sums of inputs with positive and negative weights. We carry out a steady-state and structural stability analysis for single molecular perceptrons as well as for feedforward interconnections, concluding that interconnected phosphorylation/dephosphorylation cycles may work as multilayer biomolecular neural networks (BNNs) with the capacity to perform a variety of computations. As an application, we design signaling networks that behave as linear and non-linear classifiers. 
    more » « less